

Mechanochemical Modification of Lignin and Application of the Modified Lignin for Polymer Materials

Jinwen Zhang

Composite Materials and Engineering Center

Washington State University

Significance

Petroleum-based products have big issues

A shift to biobased products

Lignocellulosic biomass

- \diamond most abundant renewable resource
- \diamond annual yield: 200 billion tons

Lignocellulosic Biomass

A Brandt, J Gräsvik, JP Hallett, T Welton. Green chem., 2013, 15, 550-583.

Hemicellulose 25-35%

Branched polysaccharide of

- Amorphous
- Highly branched aromatic polymer
- **Phenylpropanols**

Sources, types and potential products and applications of lignin

Conversion of Lignin to bioproducts

Use of lignin for materials - Methods

Hydrogel made from lignosulfonate

Xiaoxu Teng, Junna Xin, Hui Xu, Jinwen Zhang (submitted)

Lignin-derived epoxy modified asphalt

Lignin modified soy protein adhesives for wood composites

Need a simple and green method for lignin modification

Mechanochemistry

Merits

 \diamond Initiate reaction in the absence of solvent

- \diamond Reduce by-products and toxic wastes
- \diamond Reduce reaction time (energy savings)

Major linkages in lignin

Mechanochemistry in lignocellulosic biomass

Isolation of lignin from wood and pulp

Cleavage process of β-O-4 linkages in lignin

Lignin polymer materials for engineering application

Lignin as feedstock for thermoplastics

- Mechanochemical modification of lignin

Transesterification between lignin and fatty oils

Modified lignin-based polymer blends

Lignin as feedstock for thermosets

- Mechanochemical modification of lignin
 - Esterification between lignin and anhydrides
- Modified lignin-derived cured epoxy resins

Transesterification between lignin and fatty oils

¹H NMR spectra

³¹P NMR spectra

31 P NMR Spectra of oleated organoslv lignin (OL)

Effects of oleation stoichiometry on conversion and hydroxyl value of modified lignin

Sample	n _{L-OH} :n _{Mo}	Conversion	Hydroxyl value (mmol/g)		
	(molar ratio)	(%)	Aliphatic OH	Aromatic OH	Total
milled OL	/	/	2.35	2.73	5.08
oleated OL#1	1:0.5	25.02	0.70	2.19	2.89
oleated OL#2	1:0.6	25.46	0.64	2.22	2.86
oleated OL#3	1:0.7	24.43	0.59	2.34	2.93
oleated OL#4	1:0.8	22.72	0.72	2.33	3.05

Effects of oleation stoichiometry on particle size and molecular weight

Sample	n _{L-OH} /n _{Mo}	Particle size	Molecular weight		
	(molar ratio)	(µm)	M _n	M _w	M_w/M_n
milled OL	/	14.4	2650	8140	3.1
oleated OL#1	1:0.5	3.8	1220	3730	1.8
oleated OL#2	1:0.6	2.0	900	2230	2.4
oleated OL#3	1:0.7	3.2	1320	4090	3.1
oleated OL#4	1:0.8	2.6	1290	4310	3.3

GPC curves of oleated OL

Transesterification between lignin and fatty oils in ball milling

Identification of chemical structure for modified organosly lignin (OL)

Thermodynamic properties of PLA/lignin blends

Thermodynamic properties of PLA/lignin blends

DMA curves of (a) storage modulus and (b) tan δ of PLA/lignin blends

Thermal properties of PLA and its blends

Sample	<i>Т_g</i> (°С) ^а	<i>Т_g</i> (°С) ^ь	<i>Т_{сс}</i> (°С) ^ь	
neat PLA	64.9	57.2	115.8	
oleated OL30	58.0	54.4	98.3	
OL30	56.1	52.1	101.8	a: from DMA
oleated OL50	55.3	49.8	82.8	b: from DSC
OL50	51.1	43.7	95.1	
Oleated OL70	51.4	44.8	82.9	

SEM micrographs of sliced cross-section surfaces of PLA/lignin blends

Tensile properties of PLA blends with OL and oleated OL

Sample	Elastic modulus GPa	Strength MPa	Elongation @ break %
neat PLA	3.83±0.30	58.30±3.39	1.48±0.12
oleated OL30	3.71±0.16	50.17±1.29	1.40±0.02
milled OL30	3.63±0.41	37.16±2.07	0.94 ± 0.06
oleated OL50	3.62±0.20	30.36±0.97	0.95 ± 0.02
OL50	3.50±0.23	25.83±1.34	0.75±0.13
oleated OL70	3.29±0.13	11.65±1.53	0.60 ± 0.03

Identification of chemical structure for modified lignin

Organosolv lignin

Kraft lignin

³¹P NMR spectra

Effects of esterification stoichiometry on hydroxyl value of modified lignin

Sample	n _{L-OH} : n _{SA}	Hydroxyl value (mmol/g)			
		Aliphatic OH	Aromatic OH	Carboxylic OH	
OL	/	2.57	2.60	0.17	
SA-OL#1	1:1	0.24	1.73	1.11	
SA-OL#2	1:0.5	0.41	2.02	0.74	

Conclusions

- Lignin can be partially depolymerized to yield low MW oligomers by hydrogenolysis under the catalysis of Raney Ni in alkaline solution of mixed dioxane/H₂O solvent or base catalyzed depolymerization in methanol under moderate temperature and pressure
- The resulting PDL can be effectively turned into epoxy monomer by reacting with epicholorhydrin. PDL-epoxy cured with the biobased TMA modified asphalt exhibited improved performance
- Mechanochemical process as a green and solvent-free method can be used for the modification of lignin via transesterification. The compatibility of the modified lignin by methyl oleate with PLA was greatly increased
- The novel strongly swellable hydrogel was successfully prepared from lignosulfonate amine and PEGDEG.

Acknowledgements

Contributors

- Junna Xin
- Jianglei Qin
- Xiaoxu Teng
- Xiaojie Guo
- Ran Li

Financial support

This work, as part of theNorthwest Advanced Renewables Alliance (NARA), was funded by the Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.