

Biorefinery Siting in the Western Montana Corridor

Natalie Martinkus, PE, PhD candidate

Washington State University May 3, 2016

Northwest Advanced Renewables Alliance

NARA Conversion Scenarios

Option #2: Distributed Production

Source: NARA. Preliminary Scoping: Northwest Wood-Based Biofuels. IDX Studio – Fall 2014.

- Pretreatment of softwoods: micronized wood
- Depot Model 1 large and 2 small depots

Forest Residuals-to Biorefinery Supply Chain

Slash Pile Storage

Ground Slash

End User

Isobutanol Biorefinery

Sawmill (Depot)

Retrofit existing industrial facilities around existing assets

Benefits:

- Reuse existing equipment and infrastructure
- Skilled workforce is in place or nearby = jobs saved and created
- Environmental (air, water) permits and water rights may exist = less start-up time delays
- Plant is set up for receiving raw wood via trucks and rail

Existing Facilities in WMC

Framework for Facility Assessment

Depot Assumptions and Criteria

Assumptions and Criteria

- 1. Co-located with the mill
- 2. Onsite rail spur
- 3. At least 10 acres of unutilized land for depot
- 4. Access to natural gas
- 5. Where multiple mills were located in the same town, one representative mill was selected.

Depot Decision Matrix					
	Forest-2-CF		Natural		
	Delivered	Electricity	Gas	than H.S.	
	Cost (\$/BDT)	(\$/kWh)	(\$/k.c.f.)	diploma	
Scale					
5	\$48	0.02	5.5	0.0	
4	\$62	0.05	6.2	12.8	
3	\$77	0.07	6.9	25.6	
2	\$92	0.09	7.6	38.4	
1	\$106	0.11	8.3	51.2	
weights	8.5	7.0	2.6	1.9	

Weight Development from TEA					
Operating	% of				
Expenditure	ОрЕх	Normalized			
Component	Cost	to 20			
Feedstock	42%	8.5			
Electricity	35%	7.0			
Natural Gas	13%	2.6			
Labor	10%	1.9			

Costs along the Supply Chain

Total Transport Cost, C_{ij}

$$C_{ij} = F_i + V_{ij}$$

 C_{ij} = total transport cost (\$/BDT) between pts i and j F = Fixed cost at pt i V = Variable transport cost between pts i and j

 $d_p = dist. along paved road (mi)$ $d_g = dist. along gravel road (mi)$ $d_d = dist. along dirt road (mi)$ N = total no. of road segments $x_{t}, y_{t} = time along road segment x, y (hr)$ $x_{d}, y_{d} = dist. along road segment x, y (mi)$

Fixed and Variable Cost and Equation Sources

Zamora-Cristales, R., et al. "Economic Impact of Truck- Machine Interference in Forest Biomass Recovery Operations on Steep Terrain." *For. Prod. J.* 63.5-6 (2013): 162-73. Print. Parker, Nathan, et al. *Strategic Assessment of Bioenergy Development in the West: Spatial Analysis and Supply Curve Development*: The University of California, Davis, 2008. Print.

Delivered Feedstock Cost Estimation

Forest Residue Estimation Datasets

- 30-year average annual forest residual volume (BDT) for each FIA point on State and Private lands.
- 2. Fixed and variable costs for harvest, comminution and transportation
- 3. Networked road shapefile

PNW_roads_ESRI_1

_							
Г	FULLNAME	Length_mi	Sessions_Speed	Time_min	FIA-2-Depot	Depot-to-CF	CF-2-Terminal
	Slaughterhouse Creek Rd	0.678797	45	0.905062	0.210879	0.15368	0.009292
	Slaughterhouse Creek Rd	2.578026	45	3.437368	0.800907	0.583665	0.03529
	Slaughterhouse Creek Rd	0.329112	45	0.438817	0.102244	0.074511	0.004505
	Nfd 115 Rd	0.752583	45	1.003444	0.233803	0.170385	0.010302
	Nfd 115 Rd	0.960881	45	1.281175	0.298514	0.217543	0.013153
	Nfd 115 Rd	0.69398	45	0.925307	0.215597	0.157117	0.0095

Industrial Electricity Rates in PNW

0.09 - 0.10

Industrial Natural Gas Rates in PNW

Final Depot Map

Final Depots to Conversion Facility Sites

Assume 1 large depot at conversion facility site 2 smaller satellite depots

Final Depot Ranking for Spokane	Score
Riley Creek Chilco Sandpoint	93.6
Spokane Greenfield	91.7
Bennett Lumber Products, Inc.	85.1
Ceda Pine Veneer, Inc.Veneer	85.1
Vaagen Bros. Lumber Inc.	83.2

Final Depot Ranking for Frenchtown	Score
Former SmurfitStone	75.8
Idaho Forest Group Moyie Springs	72.6
Riley Creek Chilco Sandpoint	70.9
Ceda Pine Veneer, Inc.Veneer	70.9
Idaho Veneer Co. Veneer/Plywood/Sawmill	70.9

Final Depot Score for Lewiston	Score
IFG Lewiston	87.5
Bennett Lumber Products, Inc.	79.0
Idaho Forest Group Moyie Springs	72.1
Ceda Pine Veneer, Inc.Veneer	70.5
Idaho Veneer Co. Veneer/Plywood/Sawmill	70.5

Conversion Facility Siting Decision Matrix

Assumptions and Criteria

- 1. Site size at least 100 acres
- 2. Onsite rail spur (for existing facilities)
- 3. Active/decommissioned wood-using facility or greenfield
- 4. Access to natural gas

Conversion Facility Decision Matrix						
	Total Milled			Infrastructure:	Labor: %	
	Wood + IPK		Natural	% reduction	less than	
	Transport Cost	Electricity	Gas	from Greenfield	H.S.	
	(\$/BDT)	(\$/kWh)	(\$/k.c.f.)	Cost	Diploma	
Scale						
5	223.0	0.02	5.5	33%	0.0	
4	227.5	0.05	6.2	26%	12.8	
3	232.0	0.07	6.9	20%	25.6	
2	236.5	0.09	7.6	13%	38.4	
1	241.0	0.11	8.3	7%	51.2	
weights	13.3	2.5	2.0	1.4	0.8	

Weight Development from TEA					
Operating Expenditure % of OpEx Normali					
Component	Cost	to 20			
Feedstock	67%	13.3			
Electricity	12%	2.5			
Natural Gas	10%	2.0			
Labor	4%	0.8			
Annualized Infrastructure	7%	1.4			

Delivered Cost to Terminal – Spokane Conversion Facility

Delivered Cost to Terminal – Lewiston Conversion Facility

Delivered Cost to Terminal – Frenchtown Conversion Facility

Biorefinery Siting Decision Matrix

Assumptions and Criteria

- 1. Site size at least 100 acres
- 2. Onsite rail spur (for existing facilities)
- 3. Active/decommissioned wood-using facility or greenfield
- 4. Access to natural gas

Conversion Facility Decision Matrix					
	Total Milled			Infrastructure:	Labor: %
	Wood + IPK		Natural	% reduction	less than
	Transport Cost	Electricity	Gas	from Greenfield	H.S.
	(\$/BDT)	(\$/kWh)	(\$/k.c.f.)	Cost	Diploma
Scale					
5	223.0	0.02	5.5	33%	0.0
4	227.5	0.05	6.2	26%	12.8
3	232.0	0.07	6.9	20%	25.6
2	236.5	0.09	7.6	13%	38.4
1	241.0	0.11	8.3	7%	51.2
weights	13.3	2.5	2.0	1.4	0.8

	% of	
Operating Expenditure	ОрЕх	Normalized
Component	Cost	to 20
Feedstock	67%	13.4
Electricity	14%	2.9
Natural Gas	9%	1.7
Labor	4%	0.7
Annualized Infrastructure	6%	1.3

Infrastructure Assessment – reductions in CapEx

Table 6-9, Peters et al. (\$1MM-\$100MM)					
GREENFIELD SCENARIO	Solids Processing Plant	Solids- Fluids Processing Plant	Fluids Processing Plant		
Delivered cost of process					
equipment	100	100	100		
Installation	45	39	47		
Instrumentation and control	18	26	36		
piping	16	31	68		
electrical	10	10	11		
buildings (including services)	68	47	45		
yard improvements	15	12	10		
service facilities	40	55	70		
Total Direct Plant Costs	312	320	387		
engineering and supervision	33	32	33		
construction expenses	39	34	41		
Total and Indirect Plant					
Costs	384	386	461		
contractor's fee and legal					
expenses	21	23	26		
contingency	35	37	44		
Fixed Capital Investment	440	446	531		
Lang Factor (FCI)	4.4	4.46	5.31		
working capital (17.6% of FCI)	77	78	93		
	517	524	624		
Total capital investment	31/	324	024		

Solid Plant: coal briquetting plant Solid-Fluid Plant: oil extraction plant Fluid Plant: Petroleum Refinery

	Low % of	Typical %	High % of
Service Facilities	PEC	of PEC	PEC
steam generation	9.63	12.0	24.0
steam distribution	0.74	4.0	8.0
water supply, cooling and pumping	1.48	7.2	14.8
water treatment	1.85	5.2	8.4
water distribution	0.37	3.2	8.0
electrical substation	3.33	5.2	10.4
electrical distribution	1.48	4.0	8.4
gas supply and distribution	0.74	1.2	1.6
air compression and distribution	0.74	4.0	12.0
refrigeration including distribution	1.85	4.0	8.0
process waste disposal	2.22	6.0	9.6
sanitary waste disposal	0.74	1.6	2.4
communications	0.37	0.8	1.2
raw material storage	1.11	2.0	12.8
finished product storage	2.59	6.0	9.6
fire protection system	1.11	2.0	4.0
safety installations	0.74	1.6	2.4

Total Capital Investment accuracy: +/- 30%

Timmerhaus, Klaus D., Ronald E. West, and Max S. Peters. *Plant Design and Economics for Chemical Engineers*. 5th ed. New York: McGraw-Hill, 2003. Print.

Infrastructure Assessment

			Frenchtown	
Cost Items	Spokane	Lewiston	Decommissioned	
	Greenfield	Pulp Mill	Mill	
Delivered cost of process				
equipment (TDEC)	100	53.3	100	
Installation	39	39	39	
Instrumentation and				
control	26	26	26	
Piping	31	31	31	
Electrical	10	10	10	
Buildings (including	47	7	29	
Yard improvements	12	0	0	
Service facilities	81.7	28.4	81.7	
Total Direct Plant Costs	347	195	317	
Engineering and				
supervision	32	32	32	
Construction expenses	34	34	34	
Total and Indirect Plant	413	261	383	
Contractor's fee and				
legal expenses	23	23	23	
Contingency	37	37	37	
Fixed Capital Investment	473	321	443	
Lang Factor (FCI)	4.73	3.21	4.43	

			yes(0) / no(1) analysis			
Γ	Capital Cost	% of	Lewiston	Frenchtown		
	Component	TDEC	Lewiston			
	Enzymatic Hydrolysis	4.8	4.8	4.8		
	Fermentation, Separation					
	& Alcohol-to-Jet	27.0	27.0	27.0		
	Pellet Mill	21.5	21.5	21.5		
	Wastewater Treatment	46.7	0.0	46.7		
	Total	100.0	53.3	100.0		

Infrastructure Assessment

7.9

3.5

5.7

4.4

1.3

0.8

2.0

0.8

0.9

14.1

6.6

2.2

1.8

26.4

0.8

2.4

81.7

yes(0) / no(1) analysis Frenchtown % of Cost Items Lewiston Decommissioned Spokane Service Facilities Lewiston Frenchtown TDEC Greenfield Pulp Mill Mill Delivered cost of process water supply, cooling and equipment (TDEC) 100 53.3 100 7.9 0.0 pumping Installation 39 39 39 water distribution 3.5 0.0 Instrumentation and 5.7 5.7 electrical substation control 26 26 26 electrical distribution 0.0 4.4 31 31 31 Piping gas supply and distribution 1.3 0.0 Electrical 10 10 10 air compression and distribution 0.8 0.0 **Buildings** (including 47 7 29 refrigeration including 12 0 0 Yard improvements distribution 2.0 2.0 Service facilities 81.7 28.4 81.7 sanitary waste disposal 0.8 0.0 **Total Direct Plant Costs** 347 195 317 0.0 communications 0.9 Engineering and 14.1 raw material storage 14.1 32 supervision 32 32 finished product storage 6.6 6.6 Construction expenses 34 34 34 2.2 fire protection system 0.0 Total and Indirect Plant 383 413 261 Contractor's fee and safety installations 1.8 0.0 legal expenses 23 23 23 26.4 0.0 steam generation 37 37 37 Contingency steam distribution 0.8 0.0 **Fixed Capital Investment** 473 321 443 2.4 0.0 process waste disposal Lang Factor (FCI) 4.73 3.21 4.43 Total 81.7 28.4 % Reduction from greenfield 33% 6%

Final Site Selection

	Conversion Facility Decision Matrix						
		Total Milled			Infrastructure:	Labor: %	
		Wood + IPK		Natural	% reduction	less than	
		Transport Cost	Electricity	Gas	from Greenfield	H.S.	
		(\$/BDT)	(\$/kWh)	(\$/k.c.f.)	Cost	Diploma	
	Scale						
	5	223.0	0.02	5.5	33%	0.0	
	4	227.5	0.05	6.2	26%	12.8	
	3	232.0	0.07	6.9	20%	25.6	
	2	236.5	0.09	7.6	13%	38.4	
	1	241.0	0.11	8.3	7%	51.2	
	weights	13.3	2.5	2.0	1.4	0.8	
		Total Milled			Infrastructure:	Labor: %	
		Wood + IPK	Electricity	Natural	% reduction	less than	
		Transport Cost	Rate	Gas	from Greenfield	H.S.	
Location	Facility	(\$/BDT)	(\$/kWh)	(\$/k.c.f.)	Cost	Diploma	
	Frenchtown	246.8	0.07	9.2	6	. 6.1	
Specific	Lewiston	237.3	0.05	7.1	33	9.6	
Values	Spokane	223.7	0.05	7.9	0	7.8	
		Total Milled			Infrastructure:	Labor: %	
		Wood + IPK	Electricity	Natural	% reduction	less than	
		Transport Cost	Rate	Gas	from Greenfield	H.S.	
	Facility	(\$/BDT)	(\$/kWh)	(\$/k.c.f.)	Cost	Diploma	Score
Scaled Values	Frenchtown	1	3	1	2	5	29.6
with Facility	Lewiston	3	4	3	5	5	66.9
Scores	Spokane	5	4	2	1	5	85.9

 Incorporate Conversion Facility processing costs into decision matrix

 Run optimization model on all Depots to Conversion Facilities to compare against Depot Decision Matrix Results

THANK YOU

Kristin Brandt Greg Latta Michael Wolcott Bob Wooley

This work, as part of the Northwest Advanced Renewables Alliance (NARA), was funded by the Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.

