hardwoodbiofuels.org Advanced Hardwood Biofuels Northwest

Contributing to K12 Energy Literacy Science and Engineering Bioenergy Concepts

Jay Well Bioenergy Education Imitative Program Coordinator Oregon State University

Conversion

United States Department of Agriculture

Feedstock

Importance of the Bioeconomy

A role for Bioenergy

A Lack of Current Understanding

- World energy consumption is predicted to increase by 56 percent between 2010 and 2040 (www.eia.gov)
- Biomass constitutes 50% of U.S. renewable energy production (US Energy Administration, 2013)
- American adults surveyed (1001): 51% can't name one renewable fuel
 - Ethanol (6%)
 - Wood (2%)
 - "Biofuels" (2%)
 - Biodiesel (1%)
 - Garbage (1%) (Bittle, Rochkind, & Ott, 2009)
- 1% of students scored above 80% on an energy survey (Dewaters & Powers, 2008)
- Currently there is a severe deficiency in programs and classes dedicated to bioenergy (Ransom & Maredia, 2012)

United States Department of Agriculture

To ensure successful development of Pacific Northwest bioenergy, alternative energy, and allied industries, we must:

• Educate students, their families and their communities about bioenergy.

Provide them with the skills
 to operate the new
 technologies.

• Give them the tools to innovate and solve future energy problems.

To do this, we established the AHB BIOENERGY EDUCATION PIPELINE:

- Family and Community Programming
- Pre-College Programs
- Bioenergy College Transition Program
- Community and Technical College Workforce Development
- Undergraduate Bioenergy Education
- Graduate-level Programming

OSU SMILE, graduate students

Walla Walla Community College

OSU staff and graduate students

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Bioenergy Curriculum Development Process

- 1) Establish bioenergy educational framework
- 2) Bioenergy lesson development
- Pilot and evaluate lessons
- 4) Edit lessons for publication
- 5) Broad dissemination

Advanced Hardwood Biofuels Northwest

Bioenergy Curriculum Development Process:

- Establish a bioenergy education framework
- Bioenergy lesson development
- Pilot and evaluate lessons
- Edit lessons for publication
- Broad dissemination

Education

Sustainability

Feedstock

Conversion

United States Department of Agriculture

Delphi Method

- Group Problems
- Delphi Technique Mixed method
 - Experts at a distance
 - Anonymous communication
 - Multiple iterations
 - Statistical analysis
 - Develop consensus

Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003).

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Bioenergy Literacy Study

- Delphi study
- 21 participants
- Involvement with USDA NIFA projects
- Diverse backgrounds:
 - Science, engineering, education
- Multiple rounds of feedback leading to consensus

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Participants

• **Criteria:** PhD in bioenergy, published in the field, or taught bioenergy courses

Background

- Ecology
- Sustainability
- Environmental engineering
- Transportation engineering
- Biology
- Spatial Technologies
- Horticultural

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Level	Invitations	Agreed	Round 1	Round 2	Round 3
K-12	90	22	21	9	8

- Question: What science and engineering concepts are essential in K-12?
- Round 1 Brainstorming (Qualitative)
- Round 2 Narrowing Down (Quantitative)

Round 3 – Rating (Quantitative)

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Round 2 – Science Concepts

Concept	Rating	SD
Climate Change: Historical record and projected consequences	4.6	0.5
Energy Fundamentals: Work, energy, conversions	4.5	0.5
Photosynthesis: How light energy is stored in plants	4.4	0.9
Chemical Cycles: Water, carbon, nitrogen cycles	4.3	0.7
Ecosystems: Ecology and human impact	4.2	1.0
Conversion Principles: Types of conversions	4.2	0.8
Lifecycle Assessment:		0.9
Environmental impacts from cradle to grave		
Economics: How economics impacts biofuel use		1.1
Biomass Sources: How solar energy is stored	3.8	1.1
Laws of Thermodynamics: Conservation of energy		1.0
Public Policy: Impacts of politics on bioenergy production	3.3	1.4

Round 2 – Engineering Concepts

Concept	Rating	SD
Energy Consumption: Current and historical energy sources	4.8	0.7
Energy Fundamentals: Types and conversions of energy	4.2	1.0
Energy Requirements: Quantity and type of energy needed	4.2	1.1
Nature of Engineering: Role of engineering in bioenergy	4.2	1.1
Conversion Technologies: Types of conversions		1.2
Bioenergy Products: Types of biofuels		1.1
Lifecycle Assessment: Social, environmental, and economic impacts		1.1
Process Economics: Economic analysis of conversion processes		1.0
Chemical Engineering Fundamentals:		1.5
Conservation mass/energy; heat/mass transfer		

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Round 3 -- Bioenergy Literacy Framework

Concept	Rating	SD
Energy Requirements: Quantity and type of energy needed	4.88	.35
Energy Consumption: Current and historical energy sources	4.88	.35
Climate Change: Historical record and consequences	4.88	.52
Nature of Engineering: Role of engineering in bioenergy	4.62	.52
Energy Fundamentals: Work, energy, conversions	4.63	.52
Lifecycle Assessment: Environmental impacts cradle to grave	4.50	.52
Photosynthesis: How light energy is stored in plants	4.38	.46
Conversion Principles: Types of conversions	4.38	.52
Chemical Cycles: Water, carbon, nitrogen cycles	4.25	.35
Ecosystems: Ecology and human impact	4.25	.52

Western States Covering Bioenergy Concepts

No Ag Ed Standards: Wyoming, Washington, Utah, Texas, New Mexico, Montana, Missouri, Minnesota, Louisiana, Kansas, Iowa, Hawaii

Bioenergy Literacy in Context

- Supports DoE energy literacy framework
- Supports climate literacy framework
- Compatible with Next Generation Science Standards
- Provides a framework to integrate engineering into science education

United States Department of Agriculture

Impact on Curriculum Development

Before framework established

- Bioenergy specific concepts
- Focus on the details
- Disconnected from K-12 curriculum

After framework established

- Build basic energy knowledge
- Put bioenergy in context
- Increased emphasis on engineering

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Advanced Hardwood Biofuels Northwest

Bioenergy Curriculum Development Process:

- Establish a bioenergy education framework
- Bioenergy lesson development
- Pilot and evaluate lessons
- Edit lessons for publication
- Broad dissemination

Sustainability

Feedstock

Conversion

United States Department of Agriculture

hardwoodbiofuels.org

Pairing bioenergy researchers with educators

- Engage current bioenergy undergraduates and graduate students and their research mentors in curriculum development
- Establish strong partnerships with K-12 educators

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Pairing bioenergy researchers with educators

Developing enduring understandings

- Development of lessons with strong connection to STEM
- K-12 educators become more comfortable with content
- Undergraduates, graduates, and researchers gain better better understanding of K-12 education

Connecting Lessons with NGSS

- Connection to NGSS was not an afterthought
- Use as a guide during the lesson design process
- Some lessons work better than others

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Bioenergy Lesson Examples

Brewing for Bioenergy Understanding how bioethanol is made

Fork It Over Plant based fork handle development

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Advanced Hardwood Biofuels Northwest

Bioenergy Curriculum Development Process:

- Establish a bioenergy education framework
- Bioenergy lesson development
- Pilot and evaluate lessons
- Edit lessons for publication
- Broad dissemination

Sustainability

Feedstock

Conversion

United States Department of Agriculture

hardwoodbiofuels.org

Partnership With OSU SMILE Program

The SMILE Program is:

- A university-schoolcommunity partnership
- A collaboration linking Oregon State University with fourteen rural communities and their public school districts
- A program of activities that influence student attitudes, behaviors, and aspirations

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Partnership With OSU SMILE Program

The Purpose of SMILE is:

- To increase the numbers of underserved and underrepresented students who:
 - Graduate from high school prepared for college
 - Enroll in college
 - Prepare for STEM careers

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Who are SMILE Students

Bioenergy programming is reaching 496 students who are:

- 100% From groups underrepresented in Higher Education
- 85% Low-income
- 70% Ethnic and racial minorities
- 63% Female
- 44% First generation to college

65% have enrolled in either a two- or four-year degree

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

SMILE After School Science Clubs

- Teachers working with the SMILE program run afterschool science clubs
- Teachers attend OSU-based professional development workshops to learn about bioenergy
- Teachers run bioenergy lessons in their clubs
- Teachers may integrate lessons into their classroom
- Teachers provide feedback on lessons to SMILE and bioenergy program

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Advanced Hardwood Biofuels Northwest

Bioenergy Curriculum Development Process:

- Establish a bioenergy education framework
- Bioenergy lesson development
- Pilot and evaluate lessons
- Edit lessons for publication

Education

Broad dissemination

Sustainability

Feedstock

Conversion

United States Department of Agriculture

Website & Outreach

- K-12 education work and Bioenergy Minor Program at OSU
- Feature stories/photos on education outreach
- 25 videos "Introduction to Bioenergy & Biofuels"
- 30 Bioenergy lessons
- News & resources

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Lessons Updates

NFW Format - Fasier to read; engages teachers

NGSS Standards & Student Outcomes

Support reading & student worksheets

Teacher & student versions of directions; Advanced student option

Photos & diagrams to support lesson directions & concepts

^{2.} Heat each mixture separately in a microwave until it begins to froth, usually less than a minute. To prevent boiling over, carefully watch the mixture through the microwave window. Stir after heating,

Bioenergy Education Initiative

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Aariculture

Advanced Hardwood Biofuels Northwest

Bioenergy Curriculum Development Process:

- Establish a bioenergy education framework
- Bioenergy lesson development
- Pilot and evaluate lessons
- Edit lessons for publication
- Broad dissemination

Feedstock

Sustainability

Education

United States Department of Agriculture

Regional NSTA Bioenergy Workshops

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Full-day Biofuels Workshops

- First Generation Biofuels Fermentation
- <u>Second Generation Biofuels</u>
 Cellulosic Ethanol
- Third Generation Biofuels
 Algae
- Advanced Bioenergy
 Microbial Fuel Cell
- Bio-products
 Biodegradable plastics

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Next Steps

- Continue updating lessons
- Culminating publication
- Integrate bioenergy lessons into thematic units to be used in more informal education settings
- Establish collaborations and funding to ensure lessons are used

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Acknowledgments

AHB Education Team at OSU

- Kate Field
- Glen Li
- Adriene Koett-Cronn
- Brian Hartman
- Kimi Grzyb
- Keaton Lesnik
- Adam Talamantes
- Shawn Freitas

Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture

Breakout Discussion Questions

- The NARA and AHB teams have developed a wealth of bioenergy materials over the past four years. How can we keep this momentum going?
- What efforts has your group established that will continue to advance bioenergy education into the future?
- How can we work together to continue bioenergy education and funding going forward?

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture